Baidu VectorDB is an enterprise-level distributed vector database service developed by Baidu Intelligent Cloud. It is powered by Baidu’s proprietary “Mochow” vector database kernel, providing high performance, availability, and security for vector search.

Usage

import os
from mem0 import Memory

config = {
    "vector_store": {
        "provider": "baidu",
        "config": {
            "endpoint": "http://your-mochow-endpoint:8287",
            "account": "root",
            "api_key": "your-api-key",
            "database_name": "mem0",
            "table_name": "mem0_table",
            "embedding_model_dims": 1536,
            "metric_type": "COSINE"
        }
    }
}

m = Memory.from_config(config)
messages = [
    {"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
    {"role": "assistant", "content": "How about a thriller movie? They can be quite engaging."},
    {"role": "user", "content": "I'm not a big fan of thriller movies but I love sci-fi movies."},
    {"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
]
m.add(messages, user_id="alice", metadata={"category": "movies"})

Config

Here are the available parameters for the mochow config:

ParameterDescriptionDefault Value
endpointEndpoint URL for your Baidu VectorDB instanceRequired
accountBaidu VectorDB account nameroot
api_keyAPI key for accessing Baidu VectorDBRequired
database_nameName of the databasemem0
table_nameName of the tablemem0_table
embedding_model_dimsDimensions of the embedding model1536
metric_typeDistance metric for similarity searchL2

Distance Metrics

The following distance metrics are supported:

  • L2: Euclidean distance (default)
  • IP: Inner product
  • COSINE: Cosine similarity

Index Configuration

The vector index is automatically configured with the following HNSW parameters:

  • m: 16 (number of connections per element)
  • efconstruction: 200 (size of the dynamic candidate list)
  • auto_build: true (automatically build index)
  • auto_build_index_policy: Incremental build with 10000 rows increment