You can use embedding models from Huggingface to run Mem0 locally.

Usage

import os
from mem0 import Memory

os.environ["OPENAI_API_KEY"] = "your_api_key" # For LLM

config = {
    "embedder": {
        "provider": "huggingface",
        "config": {
            "model": "multi-qa-MiniLM-L6-cos-v1"
        }
    }
}

m = Memory.from_config(config)
messages = [
    {"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
    {"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
    {"role": "user", "content": "I'm not a big fan of thriller movies but I love sci-fi movies."},
    {"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
]
m.add(messages, user_id="john")

Using Text Embeddings Inference (TEI)

You can also use Hugging Face’s Text Embeddings Inference service for faster and more efficient embeddings:

import os
from mem0 import Memory

os.environ["OPENAI_API_KEY"] = "your_api_key" # For LLM

# Using HuggingFace Text Embeddings Inference API
config = {
    "embedder": {
        "provider": "huggingface",
        "config": {
            "huggingface_base_url": "http://localhost:3000/v1"
        }
    }
}

m = Memory.from_config(config)
m.add("This text will be embedded using the TEI service.", user_id="john")

To run the TEI service, you can use Docker:

docker run -d -p 3000:80 -v huggingfacetei:/data --platform linux/amd64 \
    ghcr.io/huggingface/text-embeddings-inference:cpu-1.6 \
    --model-id BAAI/bge-small-en-v1.5

Config

Here are the parameters available for configuring Huggingface embedder:

ParameterDescriptionDefault Value
modelThe name of the model to usemulti-qa-MiniLM-L6-cos-v1
embedding_dimsDimensions of the embedding modelselected_model_dimensions
model_kwargsAdditional arguments for the modelNone
huggingface_base_urlURL to connect to Text Embeddings Inference (TEI) APINone