Supported Embedding Models
Vertexai
Vertex AI
To use Google Cloud’s Vertex AI for text embedding models, set the GOOGLE_APPLICATION_CREDENTIALS
environment variable to point to the path of your service account’s credentials JSON file. These credentials can be created in the Google Cloud Console.
Usage
The embedding types can be one of the following:
- SEMANTIC_SIMILARITY
- CLASSIFICATION
- CLUSTERING
- RETRIEVAL_DOCUMENT, RETRIEVAL_QUERY, QUESTION_ANSWERING, FACT_VERIFICATION
- CODE_RETRIEVAL_QUERY
Check out the Vertex AI documentation for more information.
Config
Here are the parameters available for configuring the Vertex AI embedder:
Parameter | Description | Default Value |
---|---|---|
model | The name of the Vertex AI embedding model to use | text-embedding-004 |
vertex_credentials_json | Path to the Google Cloud credentials JSON file | None |
embedding_dims | Dimensions of the embedding model | 256 |
memory_add_embedding_type | The type of embedding to use for the add memory action | RETRIEVAL_DOCUMENT |
memory_update_embedding_type | The type of embedding to use for the update memory action | RETRIEVAL_DOCUMENT |
memory_search_embedding_type | The type of embedding to use for the search memory action | RETRIEVAL_QUERY |