š¢ Announcing our research paper: Mem0 achieves 26% higher accuracy than OpenAI Memory, 91% lower latency, and 90% token savings! Read the paper to learn how we're revolutionizing AI agent memory.
To use OpenAI LLM models, you have to set the OPENAI_API_KEY
environment variable. You can obtain the OpenAI API key from the OpenAI Platform.
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "openai",
"config": {
"model": "gpt-4o",
"temperature": 0.2,
"max_tokens": 2000,
}
}
}
# Use Openrouter by passing it's api key
# os.environ["OPENROUTER_API_KEY"] = "your-api-key"
# config = {
# "llm": {
# "provider": "openai",
# "config": {
# "model": "meta-llama/llama-3.1-70b-instruct",
# }
# }
# }
m = Memory.from_config(config)
messages = [
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
{"role": "user", "content": "Iām not a big fan of thriller movies but I love sci-fi movies."},
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
]
m.add(messages, user_id="alice", metadata={"category": "movies"})
We also support the new OpenAI structured-outputs model.
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "your-api-key"
config = {
"llm": {
"provider": "openai_structured",
"config": {
"model": "gpt-4o-2024-08-06",
"temperature": 0.0,
}
}
}
m = Memory.from_config(config)
All available parameters for the openai
config are present in Master List of All Params in Config.