šŸ“¢ Announcing our research paper: Mem0 achieves 26% higher accuracy than OpenAI Memory, 91% lower latency, and 90% token savings! Read the paper to learn how we're revolutionizing AI agent memory.

To use the Gemini model, set the GEMINI_API_KEY environment variable. You can obtain the Gemini API key from Google AI Studio.

Note: As of the latest release, Mem0 uses the new google.genai SDK instead of the deprecated google.generativeai. All message formatting and model interaction now use the updated types module from google.genai.

Note: Some Gemini models are being deprecated and will retire soon. It is recommended to migrate to the latest stable models like "gemini-2.0-flash-001" or "gemini-2.0-flash-lite-001" to ensure ongoing support and improvements.

Usage

import os
from mem0 import Memory

os.environ["OPENAI_API_KEY"] = "your-openai-api-key"  # Used for embedding model
os.environ["GEMINI_API_KEY"] = "your-gemini-api-key"

config = {
    "llm": {
        "provider": "gemini",
        "config": {
            "model": "gemini-2.0-flash-001",
            "temperature": 0.2,
            "max_tokens": 2000,
            "top_p": 1.0
        }
    }
}

m = Memory.from_config(config)

messages = [
    {"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
    {"role": "assistant", "content": "How about thriller movies? They can be quite engaging."},
    {"role": "user", "content": "I’m not a big fan of thrillers, but I love sci-fi movies."},
    {"role": "assistant", "content": "Got it! I'll avoid thrillers and suggest sci-fi movies instead."}
]

m.add(messages, user_id="alice", metadata={"category": "movies"})

Config

All available parameters for the Gemini config are present in Master List of All Params in Config.