Overview
This page documents all API changes between Mem0 v0.x and v1.0.0 Beta, organized by component and method.
Memory Class Changes
Constructor
v0.x
from mem0 import Memory
# Basic initialization
m = Memory()
# With configuration
config = {
"version": "v1.0", # Supported in v0.x
"vector_store": {...}
}
m = Memory.from_config(config)
v1.0.0
from mem0 import Memory
# Basic initialization (same)
m = Memory()
# With configuration
config = {
"version": "v1.1", # v1.1+ only
"vector_store": {...},
# New optional features
"reranker": {
"provider": "cohere",
"config": {...}
}
}
m = Memory.from_config(config)
add() Method
v0.x Signature
def add(
self,
messages,
user_id: str = None,
agent_id: str = None,
run_id: str = None,
metadata: dict = None,
filters: dict = None,
output_format: str = None, # ❌ REMOVED
version: str = None # ❌ REMOVED
) -> Union[List[dict], dict]
v1.0.0 Signature
def add(
self,
messages,
user_id: str = None,
agent_id: str = None,
run_id: str = None,
metadata: dict = None,
filters: dict = None,
infer: bool = True # ✅ NEW: Control memory inference
) -> dict # Always returns dict with "results" key
Changes Summary
| Parameter | v0.x | v1.0.0 | Change |
|---|
messages | ✅ | ✅ | Unchanged |
user_id | ✅ | ✅ | Unchanged |
agent_id | ✅ | ✅ | Unchanged |
run_id | ✅ | ✅ | Unchanged |
metadata | ✅ | ✅ | Unchanged |
filters | ✅ | ✅ | Unchanged |
output_format | ✅ | ❌ | REMOVED |
version | ✅ | ❌ | REMOVED |
infer | ❌ | ✅ | NEW |
v0.x Response (variable format):
# With output_format="v1.0"
[
{
"id": "mem_123",
"memory": "User loves pizza",
"event": "ADD"
}
]
# With output_format="v1.1"
{
"results": [
{
"id": "mem_123",
"memory": "User loves pizza",
"event": "ADD"
}
]
}
v1.0.0 Response (standardized):
# Always returns this format
{
"results": [
{
"id": "mem_123",
"memory": "User loves pizza",
"metadata": {...},
"event": "ADD"
}
]
}
search() Method
v0.x Signature
def search(
self,
query: str,
user_id: str = None,
agent_id: str = None,
run_id: str = None,
limit: int = 100,
filters: dict = None, # Basic key-value only
output_format: str = None, # ❌ REMOVED
version: str = None # ❌ REMOVED
) -> Union[List[dict], dict]
v1.0.0 Signature
def search(
self,
query: str,
user_id: str = None,
agent_id: str = None,
run_id: str = None,
limit: int = 100,
filters: dict = None, # ✅ ENHANCED: Advanced operators
rerank: bool = True # ✅ NEW: Reranking support
) -> dict # Always returns dict with "results" key
Enhanced Filtering
v0.x Filters (basic):
# Simple key-value filtering only
filters = {
"category": "food",
"user_id": "alice"
}
v1.0.0 Filters (enhanced):
# Advanced filtering with operators
filters = {
"AND": [
{"category": "food"},
{"score": {"gte": 0.8}},
{
"OR": [
{"priority": "high"},
{"urgent": True}
]
}
]
}
# Comparison operators
filters = {
"score": {"gt": 0.5}, # Greater than
"priority": {"gte": 5}, # Greater than or equal
"rating": {"lt": 3}, # Less than
"confidence": {"lte": 0.9}, # Less than or equal
"status": {"eq": "active"}, # Equal
"archived": {"ne": True}, # Not equal
"tags": {"in": ["work", "personal"]}, # In list
"category": {"nin": ["spam", "deleted"]} # Not in list
}
get_all() Method
v0.x Signature
def get_all(
self,
user_id: str = None,
agent_id: str = None,
run_id: str = None,
filters: dict = None,
output_format: str = None, # ❌ REMOVED
version: str = None # ❌ REMOVED
) -> Union[List[dict], dict]
v1.0.0 Signature
def get_all(
self,
user_id: str = None,
agent_id: str = None,
run_id: str = None,
filters: dict = None # ✅ ENHANCED: Advanced operators
) -> dict # Always returns dict with "results" key
update() Method
No Breaking Changes
# Same signature in both versions
def update(
self,
memory_id: str,
data: str
) -> dict
delete() Method
No Breaking Changes
# Same signature in both versions
def delete(
self,
memory_id: str
) -> dict
delete_all() Method
No Breaking Changes
# Same signature in both versions
def delete_all(
self,
user_id: str
) -> dict
async_mode Default Changed
v0.x
from mem0 import MemoryClient
client = MemoryClient(api_key="your-key")
# async_mode had to be explicitly set or had different default
result = client.add("content", user_id="alice", async_mode=True)
v1.0.0
from mem0 import MemoryClient
client = MemoryClient(api_key="your-key")
# async_mode defaults to True now (better performance)
result = client.add("content", user_id="alice") # Uses async_mode=True by default
# Can still override if needed
result = client.add("content", user_id="alice", async_mode=False)
Configuration Changes
Memory Configuration
v0.x Config Options
config = {
"vector_store": {...},
"llm": {...},
"embedder": {...},
"graph_store": {...},
"version": "v1.0", # ❌ v1.0 no longer supported
"history_db_path": "...",
"custom_fact_extraction_prompt": "..."
}
v1.0.0 Config Options
config = {
"vector_store": {...},
"llm": {...},
"embedder": {...},
"graph_store": {...},
"reranker": { # ✅ NEW: Reranker support
"provider": "cohere",
"config": {...}
},
"version": "v1.1", # ✅ v1.1+ only
"history_db_path": "...",
"custom_fact_extraction_prompt": "...",
"custom_update_memory_prompt": "..." # ✅ NEW: Custom update prompt
}
New Configuration Options
Reranker Configuration
# Cohere reranker
"reranker": {
"provider": "cohere",
"config": {
"model": "rerank-english-v3.0",
"api_key": "your-api-key",
"top_k": 10
}
}
# Sentence Transformer reranker
"reranker": {
"provider": "sentence_transformer",
"config": {
"model": "cross-encoder/ms-marco-MiniLM-L-6-v2",
"device": "cuda"
}
}
# Hugging Face reranker
"reranker": {
"provider": "huggingface",
"config": {
"model": "BAAI/bge-reranker-base",
"device": "cuda"
}
}
# LLM-based reranker
"reranker": {
"provider": "llm_reranker",
"config": {
"llm": {
"provider": "openai",
"config": {
"model": "gpt-4",
"api_key": "your-api-key"
}
}
}
}
Error Handling Changes
New Error Types
v0.x Errors
# Generic exceptions
try:
result = m.add("content", user_id="alice", version="v1.0")
except Exception as e:
print(f"Error: {e}")
v1.0.0 Errors
# More specific error handling
try:
result = m.add("content", user_id="alice")
except ValueError as e:
if "v1.0 API format is no longer supported" in str(e):
# Handle version compatibility error
pass
elif "Invalid filter operator" in str(e):
# Handle filter syntax error
pass
except TypeError as e:
# Handle parameter errors
pass
except Exception as e:
# Handle unexpected errors
pass
Validation Changes
Stricter Parameter Validation
v0.x (Lenient):
# Unknown parameters might be ignored
result = m.add("content", user_id="alice", unknown_param="value")
v1.0.0 (Strict):
# Unknown parameters raise TypeError
try:
result = m.add("content", user_id="alice", unknown_param="value")
except TypeError as e:
print(f"Invalid parameter: {e}")
Response Schema Changes
Memory Object Schema
v0.x Schema
{
"id": "mem_123",
"memory": "User loves pizza",
"user_id": "alice",
"metadata": {...},
"created_at": "2024-01-01T00:00:00Z",
"updated_at": "2024-01-01T00:00:00Z",
"score": 0.95 # In search results
}
v1.0.0 Schema (Enhanced)
{
"id": "mem_123",
"memory": "User loves pizza",
"user_id": "alice",
"agent_id": "assistant", # ✅ More context
"run_id": "session_001", # ✅ More context
"metadata": {...},
"categories": ["food"], # ✅ NEW: Auto-categorization
"immutable": false, # ✅ NEW: Immutability flag
"created_at": "2024-01-01T00:00:00Z",
"updated_at": "2024-01-01T00:00:00Z",
"score": 0.95, # In search results
"rerank_score": 0.98 # ✅ NEW: If reranking used
}
Migration Code Examples
Simple Migration
Before (v0.x)
from mem0 import Memory
m = Memory()
# Add with deprecated parameters
result = m.add(
"I love pizza",
user_id="alice",
output_format="v1.1",
version="v1.0"
)
# Handle variable response format
if isinstance(result, list):
memories = result
else:
memories = result.get("results", [])
for memory in memories:
print(memory["memory"])
After (v1.0.0 )
from mem0 import Memory
m = Memory()
# Add without deprecated parameters
result = m.add(
"I love pizza",
user_id="alice"
)
# Always dict format with "results" key
for memory in result["results"]:
print(memory["memory"])
Advanced Migration
Before (v0.x)
# Basic filtering
results = m.search(
"food preferences",
user_id="alice",
filters={"category": "food"},
output_format="v1.1"
)
After (v1.0.0 )
# Enhanced filtering with reranking
results = m.search(
"food preferences",
user_id="alice",
filters={
"AND": [
{"category": "food"},
{"score": {"gte": 0.8}}
]
},
rerank=True
)
Summary
| Component | v0.x | v1.0.0 | Status |
|---|
add() method | Variable response | Standardized response | ⚠️ Breaking |
search() method | Basic filtering | Enhanced filtering + reranking | ⚠️ Breaking |
get_all() method | Variable response | Standardized response | ⚠️ Breaking |
| Response format | Variable | Always {"results": [...]} | ⚠️ Breaking |
| Reranking | ❌ Not available | ✅ Full support | ✅ New feature |
| Advanced filtering | ❌ Basic only | ✅ Full operators | ✅ Enhancement |
| Error handling | Generic | Specific error types | ✅ Improvement |
Use this reference to systematically update your codebase. Test each change thoroughly before deploying to production.