Skip to main content

Common Configuration Parameters

All rerankers share these common configuration parameters:
ParameterDescriptionTypeDefault
providerReranker provider namestrRequired
top_kMaximum number of results to return after rerankingintNone
api_keyAPI key for the reranker servicestrNone

Provider-Specific Configuration

Zero Entropy

ParameterDescriptionTypeDefault
modelModel to use: zerank-1 or zerank-1-smallstr"zerank-1"
api_keyZero Entropy API keystrNone

Cohere

ParameterDescriptionTypeDefault
modelCohere rerank modelstr"rerank-english-v3.0"
api_keyCohere API keystrNone
return_documentsWhether to return document texts in responseboolFalse
max_chunks_per_docMaximum chunks per documentintNone

Sentence Transformer

ParameterDescriptionTypeDefault
modelHuggingFace cross-encoder model namestr"cross-encoder/ms-marco-MiniLM-L-6-v2"
deviceDevice to run model on (cpu, cuda, etc.)strNone
batch_sizeBatch size for processingint32
show_progress_barShow progress during processingboolFalse

Hugging Face

ParameterDescriptionTypeDefault
modelHuggingFace reranker model namestr"BAAI/bge-reranker-large"
api_keyHuggingFace API tokenstrNone
deviceDevice to run model on (cpu, cuda, etc.)strNone

LLM-based

ParameterDescriptionTypeDefault
modelLLM model to use for scoringstr"gpt-4o-mini"
providerLLM provider (openai, anthropic, etc.)str"openai"
api_keyAPI key for LLM providerstrNone
temperatureTemperature for LLM generationfloat0.0
max_tokensMaximum tokens for LLM responseint100
scoring_promptCustom prompt template for scoringstrDefault scoring prompt

LLM Reranker

ParameterDescriptionTypeDefault
llm.providerLLM provider for rerankingstrRequired
llm.configLLM configuration objectdictRequired
top_nNumber of results to returnintNone

Environment Variables

You can set API keys using environment variables:
  • ZERO_ENTROPY_API_KEY - Zero Entropy API key
  • COHERE_API_KEY - Cohere API key
  • HUGGINGFACE_API_KEY - HuggingFace API token
  • OPENAI_API_KEY - OpenAI API key (for LLM-based reranker)
  • ANTHROPIC_API_KEY - Anthropic API key (for LLM-based reranker)

Basic Configuration Example

Python
config = {
    "vector_store": {
        "provider": "chroma",
        "config": {
            "collection_name": "my_memories",
            "path": "./chroma_db"
        }
    },
    "llm": {
        "provider": "openai",
        "config": {
            "model": "gpt-4.1-nano-2025-04-14"
        }
    },
    "reranker": {
        "provider": "zero_entropy",
        "config": {
            "model": "zerank-1",
            "top_k": 5
        }
    }
}